top of page


Public·35 members

Walkman - Part 1- Tamil.mp4

LINK --->

AAC has been standardized by ISO and IEC as part of the MPEG-2 and MPEG-4 specifications.[5][6] Part of AAC, HE-AAC ("AAC+"), is part of MPEG-4 Audio and is adopted into digital radio standards DAB+ and Digital Radio Mondiale, and mobile television standards DVB-H and ATSC-M/H.

AAC supports inclusion of 48 full-bandwidth (up to 96 kHz) audio channels in one stream plus 16 low frequency effects (LFE, limited to 120 Hz) channels, up to 16 "coupling" or dialog channels, and up to 16 data streams. The quality for stereo is satisfactory to modest requirements at 96 kbit/s in joint stereo mode; however, hi-fi transparency demands data rates of at least 128 kbit/s (VBR). Tests[which] of MPEG-4 audio have shown that AAC meets the requirements referred to as "transparent" for the ITU at 128 kbit/s for stereo, and 320 kbit/s for 5.1 audio.[citation needed] AAC uses only a modified discrete cosine transform (MDCT) algorithm, giving it higher compression efficiency than MP3, which uses a hybrid coding algorithm that is part MDCT and part FFT.[4]

The discrete cosine transform (DCT), a type of transform coding for lossy compression, was proposed by Nasir Ahmed in 1972, and developed by Ahmed with T. Natarajan and K. R. Rao in 1973, publishing their results in 1974.[8][9][10] This led to the development of the modified discrete cosine transform (MDCT), proposed by J. P. Princen, A. W. Johnson and A. B. Bradley in 1987,[11] following earlier work by Princen and Bradley in 1986.[12] The MP3 audio coding standard introduced in 1994 used a hybrid coding algorithm that is part MDCT and part FFT.[13] AAC uses a purely MDCT algorithm, giving it higher compression efficiency than MP3.[4]

AAC was developed with the cooperation and contributions of companies including Bell Labs, Fraunhofer IIS, Dolby Laboratories, LG Electronics, NEC, NTT Docomo, Panasonic, Sony Corporation,[1] ETRI, JVC Kenwood, Philips, Microsoft, and NTT.[14] It was officially declared an international standard by the Moving Picture Experts Group in April 1997. It is specified both as Part 7 of the MPEG-2 standard, and Subpart 4 in Part 3 of the MPEG-4 standard.[15]

In 1997, AAC was first introduced as MPEG-2 Part 7, formally known as ISO/IEC 13818-7:1997. This part of MPEG-2 was a new part, since MPEG-2 already included MPEG-2 Part 3, formally known as ISO/IEC 13818-3: MPEG-2 BC (Backwards Compatible).[16][17] Therefore, MPEG-2 Part 7 is also known as MPEG-2 NBC (Non-Backward Compatible), because it is not compatible with the MPEG-1 audio formats (MP1, MP2 and MP3).[16][18][19][20]

AAC takes a modular approach to encoding. Depending on the complexity of the bitstream to be encoded, the desired performance and the acceptable output, implementers may create profiles to define which of a specific set of tools they want to use for a particular application.

Applying error protection enables error correction up to a certain extent. Error correcting codes are usually applied equally to the whole payload. However, since different parts of an AAC payload show different sensitivity to transmission errors, this would not be a very efficient approach.

No licenses or payments are required for a user to stream or distribute content in AAC format.[49] This reason alone might have made AAC a more attractive format to distribute content than its predecessor MP3, particularly for streaming content (such as Internet radio) depending on the use case.

On May 29, 2007, Apple began selling songs and music videos from participating record labels at higher bitrate (256 kbit/s cVBR) and free of DRM, a format dubbed "iTunes Plus" . These files mostly adhere to the AAC standard and are playable on many non-Apple products but they do include custom iTunes information such as album artwork and a purchase receipt, so as to identify the customer in case the file is leaked out onto peer-to-peer networks. It is possible, however, to remove these custom tags to restore interoperability with players that confo

  • About

    Welcome to the group! You can connect with other members, ge...

    Group Page: Groups_SingleGroup
    bottom of page